JOURNAL OF GLOBAL GOVERNANCE AND SUSTAINABILITY 00 (2026) 064074

Available online at Wisvora Journal of

Global Governance
and Sustainability

Journal of Global Governance and Sustainability

WISVOR Journal homepage: https://wisvora.com/index.php/jggs/index

Automation and Sustainability: Developing coating thickness detection

algorithm for construction H-shaped steel components

Mu-Chun Su, F.IET !, Jieh-Haur Chen, F.IET ?*, Wei-Jen Lin 3, Tzuyang Yu*, and Yu-Jen
Chiang 3

!Distinguished Professor, Department of Computer Science and Information Engineering;Dean, College of Electrical
Engineering and Computer Science, National Central University, Zhongli, Taoyuan 320317, Taiwan.

’Distinguished Professor, Department of Civil Engineering, Director, Research Center of Smart Construction; and Associate
Dean, College of Engineering, National Central University, — Zhongli, Taoyuan 320317, Taiwan.

3PhD Student, Department of Computer Science and Information Engineering, National Central University, Zhongli,
Taoyuan 320317, Taiwan.

*Professor, Department of Civil and Environmental Engineering; Director, Structural Engineering Research Group (SERG),
NDT/SHM Lab, Electromagnetic Remote Sensing Lab; Institutional lead, TIDC at UMass Lowell; University of
Massachusetts, Lowell, MA 01854, USA.

SGraduate Student, Department of Civil Engineering, National Central University, Zhongli, Taoyuan 320317, Taiwan.

ABSTRACT

To enhance the longevity and sustainability of structural materials, H-shaped steel coated with specialized protective layers
has emerged as a superior solution due to its high resistance to rust and fire. However, ensuring the optimal performance and
lifecycle efficiency of such materials relies heavily on the precise, automated assessment of coating thickness—an area where
traditional detection methods remain error-prone and inefficient. This study addresses the need for a sustainable, automated
solution by developing an intelligent detection algorithm based on ResNet, a deep convolutional neural network architecture
known for its high performance in visual recognition tasks. A comprehensive dataset of 23,900 annotated images was
constructed under a statistically robust sampling strategy, ensuring a 95% confidence level with a 5% margin of error in a
balanced 50-50 distribution. Of these, 19,100 images were used to train the CNN model, while 4,800 were reserved for
rigorous validation and testing. The dataset was systematically categorized into three distinct coating conditions: uncoated,
partially coated, and fully coated. Using a 5-fold cross-validation approach, the proposed model achieved a high accuracy
rate of 93%, demonstrating its effectiveness in classifying coating levels. This advancement represents a critical step toward
automated, scalable quality control in steel production and infrastructure maintenance. By reducing reliance on manual
inspection and minimizing material waste or under-coating, the system contributes to sustainable construction practices and

extends the service life of structural steel components.

KEYWORDS

H-shaped steel component, Deep Neural Networks (DNN), pattern recognition, coating, automation, sustainable

assessment.

*  Corresponding author: Jieh-Haur Chen (e-mail: jhchen@ncu.edu.tw)

Received November 17, 2025; Accepted December 16, 2025
Available online December 26, 2025


https://ac.wisvora.com/index.php/jggs/index
https://wisvora.com/index.php/jggs/index

Journal of Global Governance and Sustainability, JGGS Vol.1 No.1 Jun. 2026

1. INTRODUCTION

H-shaped steel components find widespread application in building structures, primarily due to their notable advantages
in terms of load-bearing capacity and reduced susceptibility to fractures compared to concrete beams and columns, as
documented in reference [1]. The shear strength and axial compression performance of these components have undergone
comprehensive evaluation in various studies [2-4]. Characterized by their relatively lightweight nature, coupled with surface
plasticity and toughness, H-shaped steel components frequently serve as pivotal beam-column elements within structural
engineering. They play a crucial role in supporting steel structures, while also finding utility as foundation piles within
infrastructure engineering, thereby imparting robustness to building foundations. While the structural merits of H-shaped
steel components are evident, the inherent steel material does possess certain limitations, namely, subpar fire resistance [5,
6] and inadequate corrosion resistance [7-9]. This underscores the significance of implementing a fire-resistant and anti-
corrosion coating treatment on the surface of H-shaped steel. A well-chosen surface coating treatment can effectively mitigate
these shortcomings, leading to enhancements in the longevity and safety of steel structures [10-13]. To predict the fire-
resistant performance of such coatings, previous studies have harnessed artificial intelligence and finite element analysis [14,
15]. The coating process necessitates careful consideration of numerous factors, aiming to achieve a balance between cost-
effectiveness and optimal results. This involves maximizing product quality while complying with various constraints and
governmental regulations. Coating procedures are typically guided by regulatory frameworks established in each respective
country. The performance of coated steel is influenced by various factors, including the choice of coating materials, spraying
techniques, steel preprocessing, and coating application methods. Different coating materials serve specific purposes in
different environments. Moreover, challenges arising from environmental conditions, such as high humidity, uniformity of
steel surfaces, spraying equipment, techniques, and potential areas of incomplete coverage, may arise. Prior to applying
coatings to H-shaped steel components, necessary preprocessing steps are essential to ensure coating quality, which is often
linked to coating thickness [16, 17].

In this study, a cutting-edge coating thickness detection system is devised, harnessing the power of Residual Learning
Network (ResNet) bolstered Convolutional Neural Networks (CNN). Digital images are methodically sorted into three
distinct categories, each representative of a specific coating scenario: uncoated, partially coated, and fully coated. The system
operates through a two-fold process: initial surface coating identification followed by the integration of the identification
system into a microcomputer that interfaces with the spraying apparatus. The selected coating constituents serve as a
foundational layer to preemptively inhibit the risk of rust formation. Adhering to the established regulations in Taiwan, the
stipulated coating thickness requirement surpasses 100 um, a benchmark diligently adhered to in the course of this research

endeavor.

2. H-SHAPED STEEL COATING

The consideration of fire resistance is imperative for the majority of H-steel coatings, even those designed to possess anti-
rust properties [6-9]. The composition of coating paints encompasses elements such as zinc, cadmium, aluminum, chromium,
nickel, iron oxide, and silver. Coatings incorporating zinc and aluminum ingredients play a pivotal role in averting galvanic
corrosion, particularly when two or more dissimilar metals are conjoined [18, 19]. The presence of cadmium within coatings
proves effective in mitigating stress cracking corrosion. Notably, intumescent coatings, upon exposure to heat, form a
protective insulating layer that shields the steel structure and enhances fire resistance [15]. The proficiency of workers
engaged in the coating process significantly influences the durability of the final product. Skilled professionals are tasked
with ensuring uniform application to adhere to coating regulations; however, occasional rework or corrective measures may
be necessary. Effective training and substantial experience are prerequisites for such industry personnel. The potential of
employing robotic devices for coating tasks, controlled and planned along predefined paths, offers an avenue to streamline
the process. This approach not only reduces labor costs but also enhances efficiency and the longevity of coatings [20-22].
Many coating criteria center around establishing the minimum coating necessary to satisfy essential safety prerequisites. The

regulatory coating standards employed in this study are succinctly outlined in Table 1. However, the existing systems do not
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yet possess the capability to quantify coating uniformity, a pivotal factor in determining the quality of H-shaped steel
components.
Table 1. Coating regulations

Coating Thicknessum Coating interval
quantity Dry Wet Min Max

Coating sequence

1 Surface Grit blasting
2 Surface 1 50 100 8Hrs 90 Days
3 Top 1 45 100 8Hrs 90 Days

3. APPROACHES TO COATING THICKNESS DETECTION

Recent strides in artificial intelligence and contemporary mathematical techniques have ushered in a fresh wave of
methodologies and approaches in the realm of coating detection. Scholars have undertaken comprehensive surveys
encompassing metal coating detection and film analysis. A substantial portion of these methods has been introduced by
researchers specializing in machine learning and sensor technology [23, 24]. Within this domain, researchers have devised a
high-precision approach to detect dust deposition, involving numerical simulations to gauge coating thickness in ventilation
and dust collection conduits. The toolkit of instrumental techniques includes X-ray micro-chromatography, guided ultrasonic
wave testing, and terahertz pulsed imaging sensors, all in tandem with mathematical methodologies [25-30].

In parallel studies, ice thickness has been gauged through the principles of light refraction, employing algorithms such as
fast Fourier transformation, image processing, and machine vision [31-33]. A gamut of classification algorithms comes into
play, encompassing logistic regression, Naive Bayes, k-nearest neighbor, as well as decision tree, random forest, and support
vector machine methodologies. These algorithms introduce frameworks for data classification tailored to specific applications.
For instance, the logistic regression algorithm, rooted in linear regression, applies the sigmoid function to classify data into
distinct groups [34]. Operating on the presumption of independent features, the probability distribution, derived by
multiplying all conditional probabilities, exhibits predictive/classification capabilities [35]. In the k-nearest neighbor
algorithm, the Euclidean distance, Manhattan distance, or Minkowski distance quantifies the separation between new and
preexisting data. The algorithm designates k preexisting data points as selection criteria, with the shortest k data points serving
as the boundary. Given potential differing labels at the boundary, the new data is classified into the group with the most
frequent occurrence label within the boundary [36, 37]. Decision tree methodologies derive classification rules from the
distinct attributes/features of each dataset. This genre encompasses algorithms like ID3, C4.5, CART, SLIQ, and SPRINT
[38,39].

Natural language processing relies on widely used algorithms like long short-term memory and recurrent neural networks
[40]. In the spheres of image and audio processing, requisites include image recognition, machine vision, and speech-to-text
translation. Intel's OpenCV tool serves as a versatile solution for a multitude of image processing tasks. In audio processing,
activities range from dynamic range compression/expansion to equalizing signals with diverse frequencies and confining
signals within specific threshold ranges [41]. In the realm of robotics, the fusion of automatic control systems and machine
vision emerges as a recurring theme, enhancing the capabilities and functionalities of these systems. Machine learning endows
computers with the ability to execute tasks sans explicit programming or instruction, constituting a pivotal facet within the
broader domain of artificial intelligence.

In recent times, the utilization of deep convolutional neural networks (CNNs) has become prevalent for discerning
features within images and videos [42, 43]. Foundational elements within deep convolutional neural networks encompass
convolution layers [44], activation layers [33, 45], pooling layers [46], and fully connected layers [47]. An outline of the
typical functioning of a CNN is as follows: Input data is divided into smaller segments to extract features, which are then
subjected to convolution with weights, bias, kernels, or filter passes to span the entire image. Outputs that traverse the pooling
layer are obtained, with three types of pooling in play: max pooling, min pooling, and average pooling. This pooling layer
amalgamates neighboring information, determining values, thereby progressively reducing data dimensions. Frequently
employed activation functions encompass Relu, Sigmoid, and Adam. Through iterations of the aforementioned processes,
the eventual output emerges as the classification result. A conclusive classification function, like SoftMax, establishes the

probability associated with a particular class.
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4. DATA COLLECTION

The digital images utilized in this study were gathered through a convenient sampling approach within the field of coating.
This field corresponds to the largest coating site for construction H-shaped steel in northern Taiwan, constituting
approximately one-third of the total volumes within the country. To adhere to the sampling criteria necessitating 95%
confidence and a 5% margin of error within the 50-50 category [48, 49], a total of 23,900 images were conveniently selected.
The image collection process was seamless, requiring only a few days. A comprehensive breakdown of the collected images
is provided in Table 2. Out of these, 19,100 images were chosen at random for the training of the CNN networks, while the
remaining 4,800 images were reserved for evaluation and testing purposes. An illustrative example of these images is depicted
in Figure 1, with each image boasting dimensions of 3,000 by 3,000 pixels. To augment the dataset, every image was
partitioned into multiple smaller segments of 224 by 224 pixels, serving as input data for the proposed CNN. This
augmentation strategy serves a dual purpose: it not only amplifies the dataset but also contributes to the establishment of a
more accurate model. Additionally, the data undergoes random transformations such as rotation, zooming, and the
introduction of Gaussian noise. To ensure robustness, all images were allocated into training and testing sets through a 5-fold

cross-validation approach.

Table 2. Data distribution

Number of training data Number of testing data
Uncoated 2,900 500
Partial coated 11,800 2,900
Fully coated 4,400 1,400
Total 19,100 4,800

Figure 1. Sample image for coating detection

S. PROPOSED METHOD AND RESULTS

The algorithm's inception entails the meticulous selection and configuration of parameters, encompassing the choice of
loss function, optimizer, learning rate, epochs, batch size, and classification function, as illustrated in Figure 2. In the context
of machine learning, the loss function serves as a metric to quantify the disparity between predicted output and labeled output,
with the goal of minimizing this difference to enhance accuracy. For classification tasks, the widely adopted loss function is
cross-entropy, particularly binary cross-entropy when dealing with two distinct groups. In the context of this study, data is
classified into either five or three groups, rendering categorical cross-entropy the most apt choice as the loss function. Cross-
entropy, in essence, quantifies the dissimilarity between probability distributions. Specifically, categorical cross-entropy
caters to scenarios where data is partitioned into multiple classes, ensuring that each data point is exclusively associated with

a single class. The mathematical representation of the loss calculation is expressed by Equation (1):
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number of classes
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Figure 2. Algorithm design flow

where i represents the amount of data, it is the target value of the i data, and p;is the predicted output of i data. The cross
entropy is positive as long as target is not equal to the predicted value.

An optimizer is a pivotal algorithm tasked with fine-tuning parameters to minimize loss and enhance accuracy. Among the
fundamental and widely embraced optimizers is stochastic gradient descent (SGD). This technique refines weights by
augmenting prior weights with the product of the learning rate and weight gradient. Introducing directional velocity in this
process propels optimization, expediting convergence while mitigating oscillation when training veers off course:

oL
SGD:W « W —ao )

Momentum : V(t) « V(t) — [yV(t—-1) + a;—‘; 3)

where the gradient computation involves determining the partial derivative of the loss function concerning the weight
parameter. In this context, o signifies the learning rate of the model, serving as the stride for weight updates. Meanwhile, y
constitutes a constant, typically assigned a value like 0.9 or an analogous figure in the momentum optimizer.

The Adam optimizer, which amalgamates stochastic gradient descent and momentum, aligns with the aforementioned
requirements and is adopted for this study. In this approach, the learning rate is dynamically adjusted based on the root mean
square of prior gradients at each step. This mechanism enhances both learning accuracy and efficiency, addressing challenges

such as overshooting the minimum with a high learning rate or inefficiency arising from a low learning rate. Adam is a
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favored choice for optimization in the machine learning realm, as advocated by multiple models within the field (Oshiro et
al., 2012). Notably, Adam continually refines the learning rate throughout the iterative process:

JOL¢

me=pyme;+(1—-p aw; “4)
Ve = Brves + (1= B) (G (5)
o 0
b= 11];35 2
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Adam retains not only the exponentially decaying average of past squared gradients (f1), which effectively addresses the
issue of drastic learning rate decay, but also maintains an exponentially decaying average of past gradients (2). Biased-
correction is implemented through Equations (6) and (7) for the first and second moment estimates, respectively. The
parameter B1 is conventionally assigned a value of 0.9,

B 2issetto 0.999, and ¢ issetto 10e®.

Regarding the remaining parameter configurations, which encompass the output activation function, number of epochs,
and batch size, the dense layer is employed. Additionally, the flattening process is directly employed to transform the 3D
feature maps (encompassing width, height, and channels) into a singular dimension (width*height*channels). This dense
layer, alternatively known as the fully connected layer, computes the dot product of kernels and input data, incorporating a
bias term. Subsequently, the outcome of this calculation is subjected to the activation function—specifically, the SoftMax
function—thus culminating in the establishment of the classification outcome, as depicted in the ensuing equation:

Zi

iz, e

)

output =

where n represents the group number, either 3 or 5 in this study.

The number of epochs often goes hand in hand with the batch size, which dictates the quantity of data processed before
parameter updates occur. A smaller number of epochs generally results in well-trained parameters but lower accuracy.
Conversely, a larger number of epochs can significantly prolong computation time. Setting the batch size too small, say to
one, can potentially lead to overfitting and training complications. Thus, the choice of batch size is frequently influenced by
computational efficiency. In the context of this study, the batch size and epoch count were fine-tuned through iterative
experimentation to achieve an acceptable accuracy level (> 90%) while employing ResNet and MobilenetV2 applications.

The parameter configurations for both applications are outlined in Table 3.

Table 3. Parameter settings

Parameters ResNet MobileNetV?2

Image size (224,224,3) (224,224,3)

Loss function Categorical cross entropy Categorical cross entropy
Optimizer Adam Adam

Learning rate 0.0001 0.0001

Batch size 8 32

Epoch 200 200

The outcome comparison between the two applications is depicted in Table 4, revealing a marginal advantage in favor of
the ResNet-enhanced CNN with a 93% accuracy rate. The predictive accuracies showcased in Table 4 comfortably exceed
the 90% threshold, underscoring their practical viability. Figures 3 and 4 showcase the testing accuracies for ResNet and
MobileNetV2, revealing a slight tendency toward overfitting in the training results during model training. Confusion matrices
for ResNet and MobileNetV2 are detailed in Tables 5-8, elucidating the occurrence attributed to data disparities. This can be
attributed to the labeling of data, which is determined through averaging across nine points of coating. Given the inherent
variations in coating across different points due to the manual application process, some degree of inaccuracy (7%) might
manifest in the classification output. However, despite this, the model's overall accuracy remains practical for coating

operations involving construction H-shaped steel components.
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Table 4. Result comparison

Model Name Model Size Model Accuracy Layers Parameters
(MB) ImageNet
ResNet152 232 0.931 152 60,419,944
MobileNetV2 14 0.901 53 3,538,984
0.9 - l,\fr-w
0.8 -
0.7 1
0.6 -
0.5 -
0.4 -
0.3 -
0.2 1
0.1 4 — train acc
val acc
0.0 T T T T T T T T T
0 25 50 75 100 125 150 175 200
Figure 3. Accuracy by ResNet
o
0.9 1
0.8 -
0.7 4
0.6 1
0.5 1
0.4 1
0.3 4
0.2 4
014 — train acc
val acc
O-O T T T T T T T T T
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Figure 4. Accuracy by MobileNetV2
Table 5. Confusion matrix for ResNet
Uncoated Partial coated Fully coated
Fully coated 1057 3 340
Uncoated 0 500 0
Partial coated 2 0 2898
Table 6. Confusion matrix for MobileNetV?2
Uncoated Partial coated Fully coated
Fully coated 1089 0 311
Uncoated 0 500 0
Partial coated 0 3 2897
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Table 7. Classification report for ResNet

Precision Recall F1-score Support
Fully coated 1.00 0.76 0.86 1400
Uncoated 0.99 1.00 1.00 500
Coating 0.89 1.00 0.94 2900
Accuracy 0.93 4800
Macro acc 0.96 0.92 0.93 4800
Weighted acc 0.94 0.93 0.93 4800

Table 8. Classification report for MobileNetV2 (three processes)

Precision Recall F1-score Support
Fully coated 1.00 0.78 0.88 1400
Uncoated 0.99 1.00 1.00 500
Coating 0.90 1.00 0.95 2900
Accuracy 0.93 4800
Macro acc 0.97 0.93 0.94 4800
Weighted acc 0.94 0.93 0.93 4800

6. CONCLUSION

The existing manual coating processes face substantial challenges and limitations within current industries. A key
challenge stems from a pronounced scarcity of skilled workers, while a notable limitation persists in the form of inconsistent
coating practices for construction H-shaped steel components. In response, this study is dedicated to addressing these issues
through the development of a dedicated coating detection algorithm tailored for construction H-shaped steel components.
Employing a sampling framework rooted in 95% confidence and a 5% margin of error within the 50-50 category, a
comprehensive dataset of 23,900 images was thoughtfully collected. Subsequent phases encompassed algorithm formulation
and evaluation, wherein a subset of 19,100 randomly selected images was allocated for training CNN networks, while the
remaining 4,800 images were reserved for evaluation and testing. The outcome of the ResNet-enhanced CNN algorithm
yielded an impressive accuracy rate of 93%.

The novel contribution of this research lies in the innovative algorithm meticulously designed to address coating issues,
thereby mitigating the risks associated with uncoated or partially coated construction H-shaped steel components. As a result,
the practical implementation of automated coating detection becomes a feasible proposition for the industry. Future
investigations may explore the integration of this algorithm with industrial robots and depth sensors to automate coating
processes. It's important to note that while the study focuses on bottom painting, primarily in red, the algorithm's potential
applicability to coatings of other colors is also noteworthy. Moreover, the algorithm's utility could extend to various
construction materials necessitating coating. Further experimentation is warranted to thoroughly assess its feasibility and

effectiveness.
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